《函数的应用》指数函数与对数函数PPT(第三课时函数模型的应用)
第一部分内容:学习目标
会利用已知函数模型解决实际问题
能根据实际问题,建立恰当的函数模型求解问题
... ... ...
函数的应用PPT,第二部分内容:自主学习
问题导学
预习教材P148-P154,并思考以下问题:
1.一次、二次函数的表达形式分别是什么?
2.指数函数模型、对数函数模型的表达形式是什么?
新知初探
几类常见的函数模型
自我检测
1.某种动物繁殖数量y(单位:只)与时间x(单位:年)的关系式为y=alog2(x+1).若这种动物第1年有100只,则到第7年它们发展到( )
A.300只 B.400只
C.500只 D.600只
2.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x年(x∈N*),该产品的产量y满足( )
A.y=a(1+5%x) B.y=a+5%
C.y=a(1+5%)x-1 D.y=a(1+5%)x
3.已知某工厂生产某种产品的月产量y与月份x满足关系y=a•0.5x+b,现已知该厂今年1月份、2月份生产该产品分别为1万件、1.5万件,则此厂3月份该产品产量为________.
... ... ...
函数的应用PPT,第三部分内容:讲练互动
指数型函数模型的应用
一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.
(1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年?
(3)今后最多还能砍伐多少年?
求解策略
指数函数模型问题的求解策略
(1)对于增长率问题,在实际问题中常可以用指数函数模型y=N(1+p)x(其中N是基础数,p为增长率,x为时间)和幂函数模型y=a(1+x)n(其中a为基础数,x为增长率,n为时间)的形式.解题时,往往用到对数运算,要注意与已知条件中给定的值对应求解.
(2)函数y=c•akx(a,c,k为常数)是一个应用广泛的函数模型,它在电学、生物学、人口学、气象学等方面都有广泛的应用,解决这类给出指数函数模型的应用题的基本方法是待定系数法,即根据题意确定相关的系数.
对数型函数模型的应用
大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数v=12log3θ100,单位是m/s,θ是表示鱼的耗氧量的单位数.
(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?
(2)某条鲑鱼想把游速提高1 m/s,那么它的耗氧量的单位数是原来的多少倍.
互动探究
(变问法)若本例条件不变:
(1)当一条鲑鱼的耗氧量是8 100 个单位时,它的游速是多少?
(2)求一条鲑鱼静止时耗氧量的单位数.
求解策略
对数函数应用题的基本类型和求解策略
(1)基本类型:有关对数函数的应用题一般都会给出函数的解析式,然后根据实际问题求解;
(2)求解策略:首先根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据数值回答其实际意义.
以图表信息为背景的函数应用题
... ... ...
函数的应用PPT,第四部分内容:达标反馈
1.某市的房价(均价)经过6年时间从1 200元/m2增加到了4 800元/m2,则这6年间平均每年的增长率是( )
A.600元 B.50%
C.32-1 D.32+1
2.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电线时,其电流强度I与电线半径r的三次方成正比,若已知电流通过半径为4毫米的电线时,电流强度为320安,则电流通过半径为3毫米的电线时,电流强度为( )
A.60安 B.240安
C.75安 D.135安
3.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超过A万元,则超过部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).
(1)写出奖金y关于销售利润x的关系式;
(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?
... ... ...
关键词:高中人教A版数学必修一PPT课件免费下载,函数的应用PPT下载,指数函数与对数函数PPT下载,函数模型的应用PPT下载,.PPT格式;